BMDE 610: Functional Neuroimaging Fusion

COURSE OUTLINE

Lectures
Class time: Friday 8h30 – 11h30
Class room: Duff 321

All course materials, slides will be posted online on Mycourses

Instructor
Christophe Grova
Office: Biomedical Engineering Department,
E-mail: christophe.grova@mcgill.ca
christophe.grova@concordia.ca

Prerequisite:
ECSE 305, MATH 223 or equivalent. The main requisites consist in being familiar with some notion of linear algebra (matrix multiplication, inversion) and statistics (Gaussian distribution, Bayes’ rules)

Course description

Learning Outcomes
To gain sufficient knowledge regarding the complementaries and limitations of functional exploration techniques of brain activity:
(i) electrophysiology: measuring neuronal bio-electrical activity with Electro- or Magneto-EncephaloGraphy (EEG vs MEG), (ii) hemodynamic processes: measuring indirectly the blood response to an activated brain region using functional Magnetic Resonance Imaging (fMRI) or Near Infra Red Spectroscopy (NIRS)
To understand the concepts of ill-posed inverse problem and multimodal fusion
To be able to critically assess most studies published in this field.
To be able to interpret EEG/MEG source localization results, fMRI results, NIRS results
To be able to chose a particular method/software when having to analyse such data
To be able to assess whether a new methodology was appropriately validated.
Evaluation Procedure

(1) Mid-term exam: March 1st 2024 (Subject to change), 8h30:9h30 (30%)
 - Understanding of important concepts
 - Interpreting source localization results

(2) Assignment 1: March 22nd 2024 (15%):
 - Implementing and testing source localization using Brainstorm software

(3) Participation (attendance): 5%

(4) Final Project: report (25%) oral presentation (25%):
 - Detailed analysis of an article or a particular application of neuroimaging data
 fusion, with specific emphasis on validation methodology. The objective of the
 project is to present in details, the added value of using data fusion in a specific
 application context. A clear and detailed understanding of the proposed
 methodology is expected

 Oral presentation (25%): April 12th 2024
 Report (25%) – (8 pages, Times New Roman, 12pts): April 19th 2024

McGill policy statements

“McGill University values academic integrity. Therefore, all students must understand the
meaning and consequences of cheating, plagiarism and other academic offences under the
Code of Student Conduct and Disciplinary Procedures” (see
www.mcgill.ca/students/srr/honest/ for more information). (approved by Senate on 29
January 2003)

“In accord with McGill University’s Charter of Students’ Rights, students in this course
have the right to submit in English or in French any written work that is to be graded.”
(approved by Senate on 21 January 2009 - see also the section in this document on
Assignments and evaluation.)
BMDE 610: Functional Neuroimaging Fusion

Proposed Outline (subject to small modifications to be updated on Mycourses)

<table>
<thead>
<tr>
<th>Week</th>
<th>Content</th>
</tr>
</thead>
</table>
| Jan 5th | W1: 8h30-10h: Introduction
W1: 10h-11h30: Basic principles in MEG/EEG, in fMRI/NIRS |
| Jan 12th | W2: 8h30-9h30: Important concepts: Multimodal fusion
W2: 9h30-10h30: Important concepts: Validation Methodology
W2: 10h30-11h30: Equivalent current dipoles |
| Jan 19th | W3: 8h30-11h30: Generative models (forward pb): EEG/MEG (N. V Ellenrieder) |
| Jan 26th | W4: 8h30-10h: Dipole scanning approaches (MUSIC, Beamformer)
W4: 10h-11h30: Distributed models 1: Min Norm, LORETA, L1 |
| Feb 2nd | W5: 8h30-10h: Distributed models 2: anatomical MRI constraints
W5: 10h-11h30: Distributed models 3: Hierarchical Bayesian Models |
| Feb 9th | W6: 8h30-10h00: Distributed models 4: MEM, Fusion EEG/MEG
W6: 10h00-11h30: Brainstorm software training |
| Feb 16th | W7: 8h30-10h: Time-Frequency analysis of EEG/MEG (J.M. Lina)
W7: 10h-11h30: Time-Frequency based source localization (J.M.Lina) |
| Feb 23rd | W8: 8h30-10h: fMRI analysis: Study design, GLM, Bayesian Models,
W8: 10h-11h30: Simultaneous EEG/fMRI in epilepsy (J. Gotman) |
| March 1st | **W9: 8h30-9h30: Midterm exam**
W9: 9h30-11h30: Atlas of intracranial EEG data (B. Frauscher) |
| March 8th | W10: No class, reading week |
| March 15th | W11: 8h30-10h: fMRI analysis: Multiple comparison
W11: 10h-11h30: Exploring oscillatory brain networks with MEG and intracranial EEG (K. Jerbi) |
| March 22nd | W12: 8h30-10h: Computational modeling involving neuronal, hemodynamic and metabolic activity (H. Benali)
W12: 10h-11h30: fMRI analysis: functional connectivity (B. Bernhardt) |
| March 29th | No class Easter Friday |
| April 5th | W13: 8h30-10h: NIRS analysis: GLM, deconvolution, inverse problem
W13: 10h-11h30: Comparative / Constrained / Symmetrical Fusion |
| April 12th | **W14: 8h30-11h30: Final projects / Oral presentations** |