BME Advanced Imaging [399-650A]

First meeting: Monday, January 4, 2021 at 14:35 in room 321 Lyman Duff

Rationale: Approximately 30–50 graduate students work within the medical imaging community at McGill. The current Physics of Medical Imaging course (563–607 B) provides the basis for the understanding of modern medical imaging technologies but does not cover advanced techniques that are used in most state-of-the-art medical imaging modalities, particularly for research. This course is designed to provide graduate students in the medical imaging discipline with a comprehensive treatment of most major imaging technologies at an advanced level.

Course Summary: Review of advanced techniques in medical imaging including: image processing techniques (classification, segmentation, rendering), fast magnetic resonance imaging (MRI), functional MRI, MR angiography and quantitative flow measurement, spiral and dynamic x-ray computed tomography, 2D/3D positron emission tomography (PET), basic PET physiology, surgical planning and guidance, functional and anatomical brain mapping, ultrasound imaging, and medical image processing.

The format of the course is a in the style of a journal-club. During each class, one student will be responsible for presenting a journal article. Class will consist of presentation and directed discussion of the journal topic, guided by Dr. Collins and invited experts from the field.

Credits: 3

Lectures: 3 hours per week, Mon-Wed 14:35-15:55

References:
- Texts:
 - The Physics of Medical Imaging, S. Webb, Institute of Physics Publishing
 - The Physics of Magnetic Resonance Imaging, Michael J. Bronskill and Perry Sprawls, American Association of Physicists in Medicine Medical Physics Monograph.

Grading: is in three parts:
- Journal article summaries (40%): All students must prepare a one page summary for each journal article presented.
- Journal article presentations (1 x 15%): Each student will present one journal article during the semester.
- Grant writing/reviewing (1 x 15%): Each student will write one short grant proposal and participate in grant reviews.
- Class participation (30%). It is important to participate in class.

McGill University values academic integrity. Therefore all students must understand the meaning and consequences of cheating, plagiarism and other academic offences under the Code of Student Conduct and Disciplinary Procedures (see http://www.mcgill.ca/integrity/ for more information).
BME Advanced Imaging [399-650A] Journal Summaries

Goal: Each class, a journal paper is presented. At the beginning of class, a short 1 page (max) written summary of the journal is required. The summary should contain the following elements:

- BME Advanced Imaging [399-650A]: Journal Summary
- Student Name, ID number
- Article Title, Author list, Journal name
- 0.5 page summary of article (not just a paraphrase of the abstract). The summary should contain something about the motivation, problem statement, proposed methods and results (where applicable).
- 1-2 sentence(s) of something you found interesting about the methods
- 1-2 sentence(s) critique about some aspect of the article
- 1-2 sentence(s) about the results

Grading: The grade for the summary will be based on comprehension of the material, organization, clarity and quality of the writing.

Deadline: The summaries must be received at the beginning of class before the journal club presentation. No summary will be accepted late.
BME Advanced Imaging [399-650A] Journal Presentation

Goal: Each week, a journal paper is presented. The student presenting the paper will talk about the paper, covering the following items:

- Article Title, Author list, Journal name.
- Summary. Start with a short summary of the article.
- Motivation. Why are these authors working on the particular problem?
- Problem Statement. What exactly are the authors working on? What is the scope of the their project?
- Previous work. You'll have to look into the work done by other authors in the field to determine what is the state of the art, and how the current article relates to the state of the art.
- Describe the methods in detail. What is used and why? What were the other choices possible? Are there items that can be critiqued in the methods? Are there caveats to look out for?
- Describe the experiments. What is the goal of the experiments? What is the experimental design? Is it good/bad?
- Results and Discussion. Are the results good/bad? How are they interpreted? Do you agree?

The goal is to discuss the paper amongst ourselves, so it is important to invite discussion throughout the presentation.

There may be an expert associated with most of the topics covered in the course. Each expert can act as a resource for preparation of the presentation (to suggest related material) and will be present during the class discussion.

Grading: The presentation will be based on clarity, organization and ability to solicit participation from the other members of the group.